equat	eld-space-based level set method for computing multi-valued solutions to 1D Euler–Poisson tions ailiang Liu and Zhongming Wang
methe	et numerical simulations of droplet emulsions in sliding bi-periodic frames using the level-set od e Jo Kim and Wook Ryol Hwang
	icity-preserving schemes for the compressible Euler equations Lerat, F. Falissard, and J. Sidès
Ва	se grid collocation schemes for stochastic natural convection problems skar Ganapathysubramanian and Nicholas Zabaras
Но	ermite WENO-based limiter for discontinuous Galerkin method on unstructured grids ong Luo, Joseph D. Baum, and Rainald Löhner
Er	g the method of weighted residuals to compute potentials of mean force ic C. Cyr and Stephen D. Bond
lation	ccurate elasto-plastic frictional tangential force-displacement model for granular-flow simu- ns: Displacement-driven formulation ang Zhang and Loc Vu-Quoc
magn	brid-Vlasov model based on the current advance method for the simulation of collisionless netized plasma Valentini, P. Trávníček, F. Califano, P. Hellinger, and A. Mangeney
	hted distance maps computation on parametric three-dimensional manifolds exander M. Bronstein, Michael M. Bronstein, and Ron Kimmel
	nservative level set method for two phase flow II in Olsson, Gunilla Kreiss, and Sara Zahedi
rical	w algorithm for charge deposition for multiple-grid method for PIC simulations in $r-z$ cylind- coordinates aristophe Cornet and Dixon T.K. Kwok
-	mization of PIC codes by improved memory management Tskhakaya and R. Schneider
and A	bust and accurate approach to computing compressible multiphase flow: Stratified flow model AUSM ⁺ -up scheme hih-Hao Chang and Meng-Sing Liou
equat	dary conditions for a divergence free velocity–pressure formulation of the Navier–Stokes tions n Nordström, Ken Mattsson, and Charles Swanson
	porating topological derivatives into shape derivatives based level set methods n He, Chiu-Yen Kao, and Stanley Osher
syste	lopment of low dissipative high order filter schemes for multiscale Navier–Stokes/MHD ms C. Yee and B. Sjögreen
Lagr	ication of the parabolic spline method (PSM) to a multi-dimensional conservative semi- angian transport scheme (SLICE) . Zerroukat, N. Wood, and A. Staniforth
bubbl	a bilized finite element method using a discontinuous level set approach for the computation of le dynamics nilie Marchandise, Philippe Geuzaine, Nicolas Chevaugeon, and Jean-François Remacle
eleme	main decomposition approach for non-conformal couplings between finite and boundary ents for unbounded electromagnetic problems in \Re^3 arinos Vouvakis, Kezhong Zhao, Seung-Mo Seo, and Jin-Fa Lee

Continued from preceeding page

995	Optimised boundary compact finite difference schemes for computational aeroacoustics Jae Wook Kim
1020	A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions Magnus Svärd, Mark H. Carpenter, and Jan Nordström
1039	A consistent approach for the coupling of radiation and hydrodynamics at low Mach number Bruno Dubroca, Mohammed Seaïd, and Ioan Teleaga
1066	A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity Xiaolin Zhong
1100	A transient higher order compact scheme for incompressible viscous flows on geometries beyond rectangular Swapan K. Pandit, Jiten C. Kalita, and D.C. Dalal
1125	A stochastic boundary forcing for dissipative particle dynamics Adrian M. Altenhoff, Jens H. Walther, and Petros Koumoutsakos
1137	An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model Zhijun Tan, K.M. Lim, and B.C. Khoo
1159	A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows T.E. Schwartzentruber, L.C. Scalabrin, and I.D. Boyd
1175	Consistent properties reconstruction on adaptive Cartesian meshes for complex fluids computations Guoping Xia, Ding Li, and Charles L. Merkle